Total Processing Tasks
{{ stats.totalTasks }}
12% from last week
๐Ÿ“Š
Average HallMeter Score
{{ stats.avgHallMeterScore }}%
High confidence
๐ŸŽฏ
Active Stations
{{ stats.activeStations }}
All systems operational
๐Ÿญ
Active Agents
{{ agents.length }}
{{ newAgentsThisWeek }} new this week
๐Ÿค–

Neural-Symbolic Processing Pipeline

๐Ÿ“ฅ
Data Input
๐Ÿ”Œ
Data Sources
โšก
Symbolic Rules
๐Ÿง 
Neural Processing
๐ŸŽฏ
HallMeter Validation
๐Ÿ“Š
Results Transparency

Causal Advice Assistant

AI-Powered Recommendations

Describe your desired outcome, and I'll analyze the causal graph to find proven paths to achieve it. Recommendations are based on successful patterns observed in your system.

Quick examples:

Causal Recommendations

{{ causalRecommendations.recommendations.length }} paths found

{{ causalRecommendations.message }}

Suggestions:

  • {{ suggestion }}
AI Analysis

{{ causalRecommendations.insights.summary }}

Key Success Factors:
  • {{ factor }}
Considerations:
  • {{ risk }}

Option {{ index + 1 }}: {{ rec.startingAction }}

Target: {{ rec.targetOutcome }}

{{ rec.confidence }}%
{{ rec.steps }} steps
Causal Path:
{{ rec.path }}
Observations
{{ rec.evidence.observations }}
Success Rate
{{ rec.evidence.successRate }}%
Evolution
{{ rec.evidence.evolutionStage }}
Implementation Steps
  1. {{ step.action }}
    Expected: {{ step.expectedResult }}
Requirements:
  • {{ req }}

System Processing State Monitor

Processing Efficiency: {{ quantumEfficiency }}%
What is this visualization?

This shows the real-time processing state of your AI agents and tasks. Each node represents a processing unit, and the connections show data flow between them. The neural wave displays overall system activity. Active nodes indicate ongoing computations, while the efficiency percentage shows how well the system is utilizing resources.

Recent High-Confidence Results (90%+ HallMeter)

No high confidence outcomes yet. Run some tasks to see results!

{{ outcome.output?.substring(0, 100) }}...
Domain: {{ outcome.domain }} | Agent: {{ outcome.agent_name }}
{{ outcome.probability }}%
HallMeterโ„ข Advanced Validation System

Verify the truth probability of any statement with AI-powered multi-dimensional analysis
HallMeter combines pattern recognition, logical analysis, neural networks, and bias detection to evaluate truth probability

๐Ÿงฎ The HallMeter Formula

Final Probability = (Base ร— 0.4) + (Components ร— 0.6)
Where: Components includes bias check with 15% weight
Component Calculation:
Components Score = ฮฃ(component[i] ร— weight[i])
= (Factual ร— 0.20) + (Logical ร— 0.18) + (Contextual ร— 0.13)
  + (Temporal ร— 0.09) + (Causal ร— 0.18) + (Environmental ร— 0.07)
  + (Bias ร— 0.15)

Seven Scientific Dimensions of Truth Validation:

1. Factual Accuracy 20%

Verifies if information can be substantiated with evidence and aligns with established facts.

Scoring Algorithm:
  • Verified facts detected: +25%
  • Speculative language: -20%
  • Precise data/numbers: +15%
  • Scientific formulas: +20%
  • Universal truths: +30%
Base: 50% | Max: 100%
2. Logical Consistency 18%

Evaluates reasoning structure and checks for contradictions or fallacies in the argument.

Logic Analysis:
  • Logical connectors: +15%
  • Contradictions found: -10%
  • Clear causal chains: +20%
  • If-then validity: +15%
  • Circular reasoning: -25%
Base: 70% | Range: 0-100%
3. Contextual Relevance 13%

Assesses alignment with specified domain, environment, and contextual parameters.

Context Scoring:
  • Domain alignment: +20%
  • Tag relevance: +20%
  • Environment match: +15%
  • Real-time data: +10%
  • Current context: +10%
Base: 60% | Boosted by data
4. Temporal Validity 9%

Checks if information is current, timeless, or appropriately dated for the context.

Time Analysis:
  • Timeless truths: 95%
  • Recent references: +15%
  • Current keywords: +10%
  • Outdated info: -30%
  • Future claims: -20%
Base: 80% | Decay over time
5. Causal Relationships 18%

Analyzes cause-effect validity and strength of correlations in the statement.

Causality Matrix:
  • Direct causation: 90%
  • Strong influence: 70%
  • Weak correlation: 50%
  • If-then patterns: 80%+
  • Complex chains: 85%+
Base: 50% | Evidence-based
6. Environmental Factors 7%

Considers physical conditions and external factors affecting statement validity.

Factor Impact:
  • Each factor: +25%
  • Multiple factors: +20%
  • Temperature critical: 90%
  • Location match: +15%
  • Conditions met: +30%
Base: 0% | Cumulative
7. Bias & Fallacy Check 15%

Detects common biases, logical fallacies, and cultural assumptions to ensure objective analysis.

Bias Detection:
  • Confirmation bias: -15%
  • Authority fallacy: -20%
  • Cultural bias: -10%
  • Absolutist language: -10%
  • Anecdotal evidence: -15%
  • Contradictions found: -5% to -30%
  • Diverse sources: +10%
Base: 100% | Deductive scoring

๐Ÿ”„ Processing Pipeline

Phase 1: Pattern Analysis (40%)
  • Domain-specific pattern matching
  • Keyword and phrase detection
  • Occurrence pattern classification
  • Initial probability estimation
  • Bias indicator detection
Phase 2: AI Enhancement (60%)
  • GPT-4/Claude deep analysis
  • Cross-validation with neural networks
  • Contradiction seeking (high temperature)
  • Real-time data integration
  • Contextual understanding refinement
Phase 3: Final Calibration
  • Component weight application
  • Bias factor adjustment
  • Domain-specific adjustments
  • Confidence interval calculation

๐Ÿ“Š Confidence Scale

0-29%: Very Low
30-49%: Low
50-69%: Medium
70-79%: Good
80-89%: Very Good
90-94%: Excellent
95-99%: Near Certain
100%: Perfect!

๐Ÿš€ Meta-Learning

85%+ Threshold:
High-confidence validations can be transformed into specialized AI agents.

Agent inherits:
  • Validated patterns
  • Causal logic
  • Domain expertise
  • Symbolic rules
  • Truth parameters
  • Bias awareness

Scientific Approach: HallMeter's multi-dimensional analysis is inspired by epistemological frameworks for truth validation, combining correspondence theory (factual accuracy), coherence theory (logical consistency), pragmatic theory (contextual relevance), and critical theory (bias detection) with modern AI capabilities for comprehensive, objective statement evaluation.

Validate Statement

Examples: scientific facts, business claims, health statements... {{ hallmeterForm.text.length }}/2000
Select data sources for real-time validation:
โšก Complex thought detected - will use decomposition analysis

Thought Network Analysis

{{ fragment.type }}
{{ fragment.text }}
{{ fragment.validation.probability }}%

Thought Connections

{{ synapse.type }} {{ (synapse.strength * 100).toFixed(0) }}% {{ synapse.reasoning }}

Quick Examples

๐ŸงŠ Physics
"Water freezes at minus degrees"
๐ŸŒ… Astronomy
"Sun rises in the east"
๐Ÿ’ช Health
"Exercise improves health"
๐Ÿ“… Business
"Weekly scheduled meetings"

What makes a good validation?
โ€ข Clear, specific statements
โ€ข Testable claims
โ€ข Domain-relevant context
โ€ข Cause-effect relationships

Validation Results

{{ getConfidenceLabel(hallmeterResult.probability) }} {{ hallmeterResult.occurrence }} occurrence
{{ hallmeterResult.probability }}%
{{ getConfidenceLabel(hallmeterResult.probability) }}
Click the meter for detailed AI explanation

Bias & Fallacy Analysis

{{ formatBiasType(check.type) }} {{ check.detected ? 'Detected' : 'Passed' }}
{{ check.evidence }}
Impact: {{ (check.impact * 100).toFixed(0) }}% penalty

Recommendations to Improve Score:

  • {{ rec }}
Domain
{{ hallmeterResult.domain || 'general' }}
Location
{{ hallmeterResult.location || 'global' }}
Method
{{ hallmeterResult.method || 'AI-neural' }}
Pattern
{{ hallmeterResult.occurrence || 'variable' }}

Component Analysis

Detailed Component Scores

{{ component === 'bias' ? 'Bias & Fallacy Check' : component }} {{ (score * 100).toFixed(1) }}%

Analysis Insights

Causal Relationships Detected
{{ rel.cause }} {{ rel.effect }} {{ (rel.strength * 100).toFixed(0) }}%
Environmental Factors
{{ factor.factor }}
Real-time Data Sources Used
{{ hallmeterResult.insights.dataSourcesUsed.length }} sources Confidence boost: +{{ hallmeterResult.insights.dataSourceImpact?.confidenceBoost || 0 }}%

AI-Generated Explanation

{{ hallmeterExplanation.prompt }}

Transform to Intelligent Agent

Meta-Learning Available

This validated knowledge can be transformed into a specialized AI agent that embodies the discovered patterns and relationships.

Confidence Score
{{ hallmeterResult.probability }}%
Domain Expertise
{{ hallmeterResult.domain }}

Agent Capabilities Preview

๐Ÿง  {{ getAgentCapability(hallmeterResult.domain, 0) }}
๐Ÿ” {{ getAgentCapability(hallmeterResult.domain, 1) }}
๐Ÿ“Š {{ getAgentCapability(hallmeterResult.domain, 2) }}
Extracted Patterns
  • Strong causal relationships detected ({{ (hallmeterResult.components.causal * 100).toFixed(0) }}%)
  • High logical consistency ({{ (hallmeterResult.components.logical * 100).toFixed(0) }}%)
  • Occurrence pattern: {{ hallmeterResult.occurrence }}
  • {{ hallmeterResult.insights.causalRelationships.length }} causal relationship(s) identified

Creating intelligent agent from validated knowledge...

Extracting patterns โ€ข Generating rules โ€ข Building neural template

Agent Created Successfully!

ID: {{ transformedAgent.agentId }}

{{ transformedAgent.config.name }}

{{ transformedAgent.config.role }}

{{ transformedAgent.config.symbolic_rules.length }} Rules {{ transformedAgent.config.meta.probability }}% Confidence {{ transformedAgent.config.meta.domain }} Expert
Causal Intelligence Graph - Living Knowledge Network

Explore the self-organizing causal graph that captures relationships between validations, agents, and outcomes. Watch as patterns evolve from observations to theories to universal laws. Click nodes to explore causal paths and see predictions of future outcomes.

{{ (causalFilters.minStrength * 100).toFixed(0) }}%

{{ selectedNode.NodeName }}

Type {{ selectedNode.NodeType }}
Evolution Stage {{ selectedNode.EvolutionStage }}
Observations {{ selectedNode.ObservationCount }}
Success Rate {{ (selectedNode.SuccessRate * 100).toFixed(1) }}%

Current State

{{ formatNodeState(selectedNode.CurrentState) }}

Predicted Outcomes

{{ pred.PredictedOutcome }} {{ (pred.Probability * 100).toFixed(1) }}%
{{ formatTimeToOutcome(pred.TimeToOutcome) }} Strength: {{ (pred.CausalStrength * 100).toFixed(0) }}%
{{ graphStats.nodeCount }}
Total Nodes
{{ graphStats.edgeCount }}
Causal Edges
{{ graphStats.lawCount }}
Universal Laws
{{ graphStats.avgStrength }}%
Avg Strength

Evolution Progression

{{ stage.label }} {{ stage.count }}
Processing Stations

Processing stations are isolated environments that run AI agents. Each station can be configured with specific resources, security policies, and agent assignments for different types of workloads.

๐Ÿญ

No Stations Yet

Create your first processing station to start running AI agents

{{ station.name }}
{{ station.description || 'Processing station' }}
{{ station.status }}
{{ station.agents?.length || 0 }}
Agents
{{ station.tasks_completed || 0 }}
Tasks
{{ station.avg_confidence || 0 }}%
Avg Confidence
Task Schedulers

Create automated task schedules that run AI agents at specified intervals. Schedulers can pull data from connected sources and execute complex processing workflows automatically.

โฐ

No Schedulers Yet

Create your first scheduler to automate task execution

{{ scheduler.name }}
Agent: {{ getAgentName(scheduler.agent_id) }}
{{ scheduler.active ? 'Active' : 'Inactive' }}
{{ scheduler.cron_expression }}
Last run: {{ formatTime(scheduler.last_run) }}
Data Sources

Connect external data sources to enrich your AI processing. Sources can include APIs, databases, files, or webhooks that provide real-time data for your agents.

Connected Data Sources

No data sources connected yet

{{ getDataSourceIcon(source.type) }}
{{ source.name }}
Type: {{ source.type }} | Refresh: {{ source.refresh_interval ? `Every ${source.refresh_interval}s` : 'Manual' }}
Transparency Dashboard

Complete visibility into AI decision-making processes. Track accuracy metrics, audit trails, and explainability coverage across all processing tasks.

Recent HallMeter Validations

Time Statement Domain Confidence Status
{{ formatTime(validation.created_at) }} {{ validation.text.substring(0, 50) }}... {{ validation.domain }} {{ validation.probability }}% {{ validation.probability >= 70 ? 'Valid' : 'Uncertain' }}

HallMeter Domain Distribution

Explainability Coverage
100%
โœ“
All decisions include detailed explanations
Audit Trail Completeness
100%
๐Ÿ“‹
Full tracking of all processing steps
Data Source Tracking
Active
๐Ÿ”
All data sources logged and traceable
Decision Reversibility
Enabled
โ†ฉ๏ธ
All decisions can be reviewed and modified
AI Agents - Neural-Symbolic Processing

Our AI Agents combine the power of symbolic reasoning with neural networks. Each agent can process deterministic rules before applying AI models, connect to multiple data sources for real-time information, and provide fully explainable outputs validated by HallMeter.

{{ getAgentIcon(agent.type) }}
{{ agent.name }}
{{ agent.role }}
{{ agent.type || 'Hybrid' }}
โšก {{ agent.symbolic_rules.length }} Rules
๐Ÿ”Œ {{ agent.data_sources.length }} Sources
๐Ÿง  Neural Processing
๐ŸŽฏ HallMeter Validated
Recent Performance
Tasks: {{ agent.task_count || 0 }}
Avg Confidence: {{ agent.avg_confidence || 0 }}%
Task Execution with HallMeter Validation

Every task execution now includes automatic HallMeter validation, providing confidence scores and detailed explanations for all AI-generated outputs. Tasks process through symbolic rules first, then neural networks, with full transparency at each step.

Execute New Task

Task Results

{{ currentTask.status }}
{{ currentTask.probability }}%
Input Processing
Symbolic Rules
Neural Processing
HallMeter Validation

Output

{{ currentTask.output }}

HallMeter Analysis

Domain
{{ currentTask.hallmeter_analysis.domain }}
Confidence
{{ getConfidenceLabel(currentTask.hallmeter_analysis.probability) }}

Detailed Explanation

Summary

{{ currentTask.explanation.summary }}

Overall Confidence: {{ (currentTask.explanation.confidence * 100).toFixed(1) }}%
{{ exp.type }} {{ exp.description }}
{{ rule.rule }}
โ†’ {{ rule.evaluated }}
โœ“ {{ rule.result }}
Model: {{ exp.model || 'GPT-4' }}
Processing Time: {{ exp.processing_time || '1.2s' }}
Tokens Used: {{ exp.tokens || '847' }}
Factual Accuracy: {{ (exp.components?.factual * 100 || 0).toFixed(1) }}%
Logical Consistency: {{ (exp.components?.logical * 100 || 0).toFixed(1) }}%
Contextual Relevance: {{ (exp.components?.contextual * 100 || 0).toFixed(1) }}%
Temporal Validity: {{ (exp.components?.temporal * 100 || 0).toFixed(1) }}%

Recent Tasks

Task ID Agent Status HallMeter Score Time Actions
{{ task.id }} {{ getAgentName(task.agent_id) }} {{ task.status }} {{ task.probability }}% - {{ formatTime(task.created_at) }}

Compliance & Transparency Reports

Comprehensive Reporting

Generate detailed reports covering EU AI Act compliance, HallMeter validation statistics, task performance metrics, and full transparency documentation. All reports include complete audit trails and explainability coverage.

Report Type Status Details
EU AI Act Compliance Compliant Full transparency and explainability for all decisions
HallMeter Validation Active {{ stats.totalTasks }} validations with {{ stats.avgHallMeterScore }}% average confidence
Data Source Tracking Complete All {{ stats.dataSources }} sources logged and traceable
Scheduler Audit Up to Date {{ stats.activeSchedulers }} active schedulers monitored

Report History

No reports generated yet

{{ report.type }} Report
Generated: {{ formatDateTime(report.created_at) }}

Qriton Platform Documentation

Welcome to the Qriton Enterprise Platform documentation. This guide covers the architecture, API references, and best practices for using our neural-symbolic AI system.

Core Components

1. Processing Stations

Stations are isolated processing environments that run AI agents. Each station provides:

  • Resource isolation and management
  • Security boundaries for sensitive processing
  • Scalable compute resources
  • Agent assignment and orchestration
  • Performance monitoring and metrics

2. AI Agents

Our hybrid AI agents combine symbolic reasoning with neural networks:

  • Symbolic Rules: Deterministic pre-processing logic
  • Neural Processing: Advanced AI models (GPT-4, Claude, etc.)
  • Data Integration: Real-time data from multiple sources
  • Explainability: Full transparency in decision-making
  • HallMeter Validation: Truth probability assessment

3. HallMeter Technology

HallMeter evaluates the truth probability of AI outputs using six key components:

  • Factual Accuracy: Verification against known facts
  • Logical Consistency: Internal logic validation
  • Contextual Relevance: Domain and context alignment
  • Temporal Validity: Time-relevance of information
  • Causal Relationships: Cause-effect analysis
  • Environmental Factors: External conditions assessment

Available AI Agents

๐Ÿ” Anomaly Detector

Identifies anomalies in system metrics using pattern recognition and statistical analysis. Combines rule-based thresholds with neural network pattern detection.

๐ŸŽฏ Root Cause Analyzer

Analyzes system failures and performance issues to identify root causes. Uses causal inference and dependency mapping.

โšก Optimization Engine

Optimizes system performance and resource allocation. Applies constraint solving and multi-objective optimization.

๐Ÿ“Š Market Analyzer

Analyzes market trends and provides investment insights. Integrates real-time market data with predictive modeling.

๐Ÿ›ก๏ธ Security Auditor

Performs security assessments and vulnerability analysis. Combines rule-based security policies with threat detection AI.

๐Ÿ“‹ Compliance Checker

Ensures regulatory compliance and policy adherence. Maps requirements to system states and generates audit reports.

API Reference

Authentication

// Login POST /api/auth/login { "username": "your-username", "password": "your-password" } // Response { "token": "jwt-token", "user": { "id": "user-id", "username": "your-username" } }

Stations API

// List all stations GET /api/stations // Create a new station POST /api/stations { "name": "Production Station", "description": "Main production processing", "config": { "max_agents": 10, "resources": { "cpu": "4 cores", "memory": "16GB" } } } // Update station PUT /api/stations/{stationId} // Delete station DELETE /api/stations/{stationId}

Agents API

// List all agents GET /api/agents // Create a new agent POST /api/agents { "name": "Custom Analyzer", "type": "hybrid", "role": "Analyzes custom metrics", "prompt_template": "Analyze the following data: {{input}}", "symbolic_rules": [ { "if": { "field": "metrics.cpu", "op": "gt", "value": 80 }, "then": { "flag": "high_cpu_usage" } } ], "data_sources": ["api-1", "db-1"] } // Update agent PUT /api/agents/{agentId} // Delete agent DELETE /api/agents/{agentId}

HallMeter API

// Validate a statement POST /api/hallmeter/validate { "text": "Statement to validate", "context": { "domain": "technology", "tags": ["ai", "quantum"], "location": "global" } } // Response { "id": "validation-id", "probability": 87, "components": { "factual": 0.92, "logical": 0.88, "contextual": 0.85, "temporal": 0.90, "causal": 0.83, "environmental": 0.84 }, "domain": "technology", "insights": { "domainSpecific": [...], "causalRelationships": [...], "environmentalFactors": [...] } } // Get explanation POST /api/hallmeter/explain/{validationId}

Task Execution API

// Execute a task POST /api/tasks/run { "agentId": "anomaly-detector", "input": { "metrics": { "cpu": 85, "memory": 92, "disk": 78 } } } // Response (via WebSocket) { "type": "task:completed", "data": { "taskId": "task-123", "output": "Anomaly detected in memory usage", "hallmeter": { "probability": 94, "domain": "technology" }, "explanation": { "summary": "High confidence anomaly detection", "explanations": [...] } } }

Scheduler API

// Create scheduler POST /api/stations/{stationId}/schedulers { "name": "Hourly Analysis", "agent_id": "anomaly-detector", "cron_expression": "0 * * * *", "input_template": { "source": "scheduled", "fetch_latest": true }, "active": true } // List schedulers GET /api/schedulers // Update scheduler PUT /api/schedulers/{schedulerId} // Delete scheduler DELETE /api/schedulers/{schedulerId}

Data Sources API

// Add data source POST /api/datasources { "name": "Metrics API", "type": "api", "config": { "url": "https://api.example.com/metrics", "method": "GET", "headers": { "Authorization": "Bearer token" } }, "refresh_interval": 300 } // List data sources GET /api/datasources // Test data source POST /api/datasources/{sourceId}/test // Update data source PUT /api/datasources/{sourceId} // Delete data source DELETE /api/datasources/{sourceId}

WebSocket Events

The platform uses WebSocket for real-time updates. Connect to receive:

  • quantum:update - Quantum state changes
  • task:completed - Task completion notifications
  • scheduler:update - Scheduler status changes
  • datasource:update - Data source updates
  • station:status - Station status changes

Best Practices

Agent Design

  • Start with symbolic rules for deterministic logic
  • Use neural processing for complex pattern recognition
  • Connect relevant data sources for real-time context
  • Design clear, specific prompt templates
  • Test with various inputs before production deployment

HallMeter Usage

  • Always validate critical outputs with HallMeter
  • Use domain-specific context for better accuracy
  • Monitor component scores to identify weak areas
  • Set confidence thresholds based on use case criticality
  • Review low-confidence results manually

Performance Optimization

  • Use station resources efficiently
  • Batch similar tasks when possible
  • Cache frequently accessed data
  • Monitor agent performance metrics
  • Optimize symbolic rules for speed

Compliance & Security

The Qriton platform is designed for enterprise compliance:

  • EU AI Act: Full transparency and explainability
  • GDPR: Data privacy and user rights
  • SOC 2: Security and availability controls
  • ISO 27001: Information security management
  • Audit Trails: Complete logging of all operations

Support & Resources

Need help? Access our support resources:

  • Technical Support: support@qriton.ai
  • Documentation: docs.qriton.ai
  • API Status: status.qriton.ai
  • Community Forum: community.qriton.ai
  • Training Resources: learn.qriton.ai